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Abstract. In the context of scattering problems in the harmonic regime, we
consider the problem of identification of some Generalized Impedance Bound-
ary Conditions (GIBC) at the boundary of an object (which is supposed to
be known) from far field measurements associated with a single incident plane

wave at a fixed frequency. The GIBCs can be seen as approximate models for
thin coatings, corrugated surfaces or highly absorbing media. After pointing
out that uniqueness does not hold in the general case, we propose some addi-
tional assumptions for which uniqueness can be restored. We also consider the

question of stability when uniqueness holds. We prove in particular Lipschitz
stability when the impedance parameters belong to a compact subset of a finite
dimensional space.

1. Introduction

We address in this work uniqueness and stability issues related to the identifica-
tion of a medium impedance from the knowledge of far measurements of a scattered
wave at a given frequency. We restrict ourselves in these first investigations to
the scalar case (the Helmholtz equation), that models either acoustic waves or two
dimensional settings of electromagnetic problems. Assuming that the unknown
medium occupies a domain D, the medium impedance is understood as a “local”
operator that links the Cauchy data of the field u on the medium boundary Γ := ∂D.
More precisely we shall consider the cases where a boundary condition of the form

∂u/∂ν + Zu = 0 on Γ

is satisfied, where Z is a boundary operator and ν denotes the outward normal field
on Γ.

The exact impedance operator Z corresponds to the so-called Dirichlet-to-Neumann
(DtN) map, i.e. f 7→ −∂u/∂ν|Γ where u solves the Hemholtz equation inside D and
satisfies u = f on Γ. Consequently determining this map is “equivalent” to identify
the physical properties inside D, which is in general a severely ill-posed problem
that requires more than a finite number of measurements.

Key words and phrases: Inverse scattering problems in electromagnetism and acoustics, gen-
eralized impedance boundary conditions, uniqueness, stability.
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We are interested here in situations where the operator Z is an approximation
of the exact DtN map. In general these approximations correspond to asymptotic
models associated with configurations that involve a small parameter. These cases
include small amplitude roughness, thin coatings, periodic gratings, highly absorb-
ing media, . . . We refer to [18, 8, 2] for a review of these models.

The simplest form is the case where Z is a scalar function, which corresponds
in general to the lowest order (non trivial) approximations, for instance in the case
of very rough surfaces of highly absorbing media (the Leontovich condition [15]).
However, for higher order approximations or in other cases the operator Z may
involve boundary differential operators. For instance when the medium contains a
perfect conductor coated with a thin layer of width δ then for TM polarization, the
approximate boundary conditions of order 1 corresponds to Z = 1/δ while for the
TE polarization it corresponds to Z = δ(∂ss + k2n) where s denotes the curvilinear
abscissa, k the wave number and n is the mean value of the thin coating index
with respect to the normal coordinate. Higher order approximations would include
curvature terms or even higher order derivatives [4, 10, 11]. This type of conditions
will be referred to as Generalized Impedance Boundary Conditions.

We shall address in the present work the question of unique identification and
stability of the reconstruction of the operator Z from the knowledge of one scat-
tered wave. One easily sees, from the given example, how the identification of the
impedance would provide information on some effective properties of the medium
(for instance, the thickness of the coating and the normal mean value of its in-
dex). Determining these effective properties would be less demanding in terms of
measurements than solving the inverse problem with the exact DtN map (the un-
known parameters have one dimension less) and we also expect that the inherent
ill-posedness to be less severe. Motivated by the example above we shall consider
generalized impedance boundary conditions of the form:

(1) Z = µ∆Γ + λ,

where µ is a complex constant and λ is a complex function and where ∆Γ denotes
the Laplace-Beltrami operator on Γ.

The case of standard impedance problems (µ = 0) has been studied by several
authors [14, 19], where for instance optimal logarithmic stability is obtained. Our
analysis here is different and is rather motivated by numerical considerations. It
also applies to the case µ 6= 0. We shall prove injectivity of the Fréchet derivative
(which is equivalent to local stability) of the inverse map by using the adjoint
state technique. We also investigate the situations where Lipschitz stability can be
obtained. In the same spirit as in [3] we shall prove a general result showing how
Lipschitz stability holds when we restrict the impedance parameters to a compact
subset of a finite dimensional space, assuming injectivity of the inverse map and
of its derivative. Motivated by this result we investigate the uniqueness question
from the knowledge of one scattered wave. We show that uniqueness when µ 6= 0
cannot be true in general, but holds under further assumptions on the parameters
(typically assuming that part of the parameters are known) and on the geometry.

The outline of our article is the following. We introduce in the next section
the forward scattering problem and briefly recall the mathematical property of the
solution in the case of GIBC. We then formulate the inverse problem. Section
3 is dedicated to the question of uniqueness from the knowledge of the far field
associated to one incident wave. Section 4 deals with the question of stability by
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analyzing the injectivity of the Fréchet derivative. It also includes a general result
on Lipschitz stability.

2. The forward and inverse problems

Let D be an open bounded domain in R
3, and Ω := R

3 \D. The domain D will
be referred to as the obstacle and a GIBC holds on its boundary Γ. An incident
plane wave ui(x) := eik d.x, with k > 0 denoting the wavenumber and ||d|| = 1, is
scattered by the obstacle D and gives raise to a scattered field us. The governing
equations for us in Ω are

(2)



























∆us + k2us = 0 in Ω,

∂us

∂ν
+ µ∆Γu

s + λus = f on Γ,

lim
R→+∞

∫

∂BR

|∂us/∂r − ikus|2 ds(x) = 0,

with

f := −
(

∂ui

∂ν
+ µ∆Γu

i + λui
)

|Γ,

and where ν denotes the unit normal to Γ oriented to the exterior of D. If we set
u := us+ui as being the total field, then the second equation of (2) is equivalent to

(3) ∂u/∂ν + µ∆Γu+ λu = 0 on Γ.

The last equation in (2) is the classical Sommerfeld radiation condition where BR

denotes a ball of radius R.
We assume that the boundary Γ is Lipschitz continuous, such that for a function
v ∈ H1(Γ), the tangential gradient ∇Γv is defined in (L2(Γ))3, and ∆Γv is defined
in H−1(Γ) by the identity

〈∆Γv, w〉H−1(Γ),H1(Γ) = −
∫

Γ

∇Γv.∇Γw ds, ∀w ∈ H1(Γ).

The space of solutions to the forward problem differs between the cases µ = 0 and
µ 6= 0.

1. In the case µ = 0, problem (2) coincides with the classical impedance problem.
It is uniquely solvable in V0 := {v ∈ D′(Ω), φv ∈ H1(Ω), ∀φ ∈ D(R3)} pro-
vided λ ∈ L∞(Γ) with Im(λ) ≥ 0 (see for instance [17]). This result remains
true for f ∈ H−1/2(Γ). In [7], it is proved that if moreover the boundary Γ is
C2 and λ ∈ C0(Γ), then the solution us is continuous up to the boundary Γ.

2. In the case µ 6= 0, problem (2) will be referred to as the generalized impedance
problem. It is uniquely solvable in V := {v ∈ V0, v|Γ ∈ H1(Γ)} provided that
λ ∈ L∞(Γ) with Im(λ) ≥ 0 as well as Re(µ) > 0 and Im(µ) ≤ 0. This result
remains true for f ∈ H−1(Γ).

For sake of completeness, we shall sketch the proof in the case of the generalized
impedance problem which can be seen as a slight adaptation of the proof in [17]
for classical impedance problems. We restrict the problem to a bounded domain
ΩR := Ω∩BR with the help of the Dirichlet-to-Neumann map SR : H1/2(∂BR) −→
H−1/2(∂BR), defined for g ∈ H1/2(BR) by SRg = ∂νu

e|∂BR
, where ue is the solution

to the Helmholtz equation in R
3 \BR satisfying the Sommerfeld radiation condition

and ue = g on ∂BR. This operator satisfies in particular

Re 〈SRg, g〉 ≤ 0 and Im 〈SRg, g〉 ≥ 0 ∀ g ∈ H
1

2 (∂BR),

Inverse Problems and Imaging Volume X, No. X (200X), X–XX



4 Laurent Bourgeois and Houssem Haddar

where 〈·, ·〉 denotes the duality product between H− 1

2 (∂BR) and H
1

2 (∂BR). Solving
problem (2) is then equivalent to find us in VR := {v ∈ H1(ΩR); v|Γ ∈ H1(Γ)}
satisfying

(4)



























∆us + k2us = 0 in ΩR,

∂us

∂ν
+ µ∆Γu

s + λus = f on Γ,

∂us

∂r
= SR(u

s|∂BR
) on ∂BR.

Problem (4) is then proved to be equivalent to the weak formulation: find us in VR
such that for all v in VR,

a(us, v) = l(v),

with

a(us, v) :=

∫

ΩR

(∇us · ∇v − k2usv) dx+

∫

Γ

(µ∇Γu
s.∇Γv − λusv) ds− 〈SRu

s, v〉 ,

l(v) = 〈−f, v|Γ〉H−1(Γ),H1(Γ) .

It is easily seen that VR equipped with the scalar product (·, ·)VR
:= (·, ·)H1(ΩR) +

(·, ·)H1(Γ) is a Hilbert space. The weak formulation can then be written in the form:
find us in VR such that

(JR +KR)u
s = FR in VR

where the operators JR : VR −→ VR and KR : VR −→ VR are uniquely defined
by

(JRu
s, v)VR

= (us, v)H1(ΩR) + µ

∫

Γ

∇Γu
s · ∇Γv ds− 〈SRu

s, v〉

(KRu
s, v)VR

= −(1 + k2)(us, v)L2(ΩR) −
∫

Γ

λusv ds

and FR is uniquely defined by

l(v) = (FR, v)VR
.

One then easily checks, by application of the Lax-Milgram theorem that JR is an
isomorphism for Re(µ) > 0, and the application of the Rellich compact embedding
theorem that KR is compact. Therefore, with the help of Fredholm alternative it
is sufficient to prove the injectivity of the operator JR +KR, which is equivalent to
prove uniqueness of solutions to problem (2).

Following [7], a sufficient condition for uniqueness is that for all solution u ∈ V
of (2) with f = 0,

∫

Γ

Im(u
∂u

∂ν
) ds ≤ 0.

Since
∫

Γ

Im(u
∂u

∂ν
) ds = Im(µ)

∫

Γ

|∇Γu|2 ds−
∫

Γ

Im(λ)|u|2 ds

we have uniqueness in the case Im(µ) ≤ 0 and Im(λ) ≥ 0, which completes our
sketch of proof.
Let us finally notice that both operators JR and KR depend continuously on λ and
µ.
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Formulation of the inverse problem. Following [7], the solution us of prob-
lem (2) has the asymptotic behavior

us(x) =
eikr

r
(u∞(x̂) +O(

1

r
)), r → +∞,

uniformly in all directions x̂ = x/r ∈ S2, where r := |x| and S2 denotes the unit
sphere in R

3. The far field u∞ ∈ L2(S2) is given by

(5) u∞(x̂) =

∫

Γ

{us(y)∂Φ
∞(y, x̂)

∂ν(y)
− ∂us

∂ν
(y)Φ∞(y, x̂)} ds(y), ∀x̂ ∈ S2,

where Φ∞(y, x̂) := 1
4π e

−ikx̂.y and where the second integral has to be understood

as a duality pairing between H−1/2(Γ) and H1/2(Γ).

The inverse problem we are interested in is to determine both µ and the func-
tion λ on Γ from the knowledge of the far field u∞ associated with one direction
d of the incident field. We shall address the questions of uniqueness and stability
of this problem. For both questions we shall first consider the classical impedance
problem (µ = 0) and then the case of generalized impedance problem. Answering
these questions amounts to study the properties of the non linear map T : λ 7−→ u∞

for the first case and T : (λ, µ) 7−→ u∞ for the second one.

3. Uniqueness

This section is devoted to the investigation of the uniqueness for the inverse
problem formulated above which is equivalent to analyzing the injectivity of the
operator T .

3.1. The classical impedance problem. Analyzing the injectivity of T as an
operator acting on L∞(Γ) seems to be challenging. We shall restrict ourselves to
the subspace of L∞(Γ) formed by piecewise-continuous functions. Let I be a given
integer and Γi, i = 1, ..., I, be open sets of Γ such that Γi ∩ Γj = ∅ for i 6= j,

Γ = ∪I
i=1Γi, and the sets ∂Γi are negligible in the sense of the Lebesgue surface

measure supported by Γ. We define the subspace CI(Γ) as the set of functions
u ∈ L∞(Γ) such that each restriction of u to Γi belongs to C0(Γi). The space
CI(Γ) is obviously a closed subspace of L∞(Γ).

We shall also use the subsets

L∞
+ (Γ) := {λ ∈ L∞(Γ) ; Im(λ) ≥ 0} and CI+(Γ) := CI(Γ) ∩ L∞

+ (Γ).

Proposition 1. The operator T : CI+(Γ) → L2(S2) such that λ 7−→ u∞, where u∞

is defined from us by using (5) and us is defined from λ by solving (2), is injective.

Proof. Assume that T (λ1) = T (λ2) = u∞ with λ1, λ2 ∈ CI+(Γ). From the Rellich
Lemma and the unique continuation principle (see [7]), the function u := u1−u2 =
us1 − us2 vanishes in Ω. Since u satisfies ∆u + k2u = 0 in Ω, the traces (u1 − u2)|Γ
and ∂ν(u1 − u2)|Γ, which are well defined in H1/2(Γ) and H−1/2(Γ) respectively,
also vanish.
Considering now the boundary condition on Γ,

∂u1
∂ν

+ λ1u1 =
∂u2
∂ν

+ λ2u2 = 0,

we obtain on Γ,
(λ1 − λ2)u1 = 0.
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We shall prove that λ1 = λ2 almost everywhere on Γ. Assume that there exists
x0 ∈ Γ, where x0 does not belong to some ∂Γi, such that λ1(x0) 6= λ2(x0). Since
λ1 and λ2 are continuous in a neighborhood of x0, there exists η > 0 such that
|λ1(x) − λ2(x)| ≥ c > 0 for all x in B(x0, η) ∩ Γ. It follows that u1 = 0 on
B(x0, η) ∩ Γ. The boundary condition on Γ leads to ∂νu1 = 0 on B(x0, η) ∩ Γ,
and unique continuation leads to u1 = 0 in Ω. Since the incident wave ui does
not satisfy the radiation condition, while the scattered field us1 does, we obtain a
contradiction.

Remark 1. Let us notice that the proof remains valid even if I and the partition
Γi, i = 1, . . . , I are not a priori known.

3.2. The generalized impedance problem. We start this section by providing
a counterexample showing that T cannot be injective under the sole assumptions
that guarantee well-posedness of problem (2), i.e.

(6) λ ∈ L∞(Γ), Im(λ) ≥ 0, Re(µ) > 0 and Im(µ) ≤ 0.

The requirements of (6) will be referred to as assumption (H0) in the following.
Our counterexample is valid even if the boundary Γ is C∞ and λ is a C∞ function
on Γ.
It is constructed as follows: one first chooses a constant impedance λ0 ∈ iR with
Im(λ0) > 0 such that the corresponding solution u0 of the classical impedance
problem, which is C∞ up to the boundary Γ, does not vanish on Γ. This choice is
possible as demonstrated in 2D by the case D = B(0, 1), d = (1, 0), k = 1, λ0 = i
where the solution u0(1, θ) on Γ is given (after straightforward calculations) by

u0(1, θ) =
2i

π

∑

n∈Z

in einθ

H ′
n(1) + iHn(1)

,

where Hn denotes the Hankel function of the first kind of order n. The modulus
of the function u0(1, .) is depicted in Figure 1. Let us denote by u∞0 the far field

0 pi/3 2pi/3 pi 4pi/3 5pi/3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1. Modulus of u0(1, θ) versus θ ∈ [0, 2π]

associated with u0. Since u0 does not vanish on Γ, the function α = ∆Γu0/u0 is a
C∞ function on Γ, and therefore bounded on Γ. Now let µ1 6= µ2 be any complex
numbers such that

|µi|max
Γ

|α| ≤ Im(λ0), Re(µi) > 0, Im(µi) ≤ 0, i = 1, 2,

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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and let the associated C∞ functions λ1 and λ2 be defined on Γ by

λi = λ0 − αµi, i = 1, 2.

We have on Γ

∂u0
∂ν

+ µi∆Γu0 + λiu0 = (−λ0 + αµi + λi)u0 = 0,

and

Im(λi) = Im(λ0)− Im(αµi) ≥ Im(λ0)− |µi|max
Γ

|α| ≥ 0.

As a result, u∞0 is the far field associated to the solution u0 of the generalized
impedance problem with both (λ1, µ1) and (λ2, µ2).
It should also be noted that even if µ is real (which would correspond to the thin
coating case, as presented in the introduction, with µ = δ and λ = δk2n2), our
counterexample shows that unique determination of (λ, µ) does not hold in general.
The counterexample above justifies the need to consider restricted cases where some
a priori knowledge is introduced in addition to the assumption (H0) given by (6).
We were able to recover injectivity in the following complementary cases:

1. Assumption (H1): λ ∈ C and µ ∈ C are two constants.
Furthermore, we assume there exist x0 ∈ Γ and η > 0 such that Γ0 = Γ ∩
B(x0, η) is either a portion of a plane, or a portion of a cylinder, or a portion
of a sphere, and such that the set {x+γν(x), x ∈ Γ0, γ > 0} is included in Ω.

2. Assumption (H2): λ ∈ CI(Γ), µ ∈ C, and we assume that either of the
following holds:
• (H2a) λ is fixed and known, the unknown being µ.
• (H2b) both Re(λ) and Im(µ) are fixed and known, the unknown being
Im(λ) and Re(µ),

• (H2c) both Im(λ) and Re(µ) are fixed and known, the unknown being
Re(λ) and Im(µ),

• (H2d) µ is fixed and known, the unknown being λ.

Furthermore, in the three cases (H2a), (H2b), (H2c), we assume there is
no constant C such that on Γ:

(7)

(

ui

∂ui/∂ν

)

= C P

(

1
−λ

)

with P :=







1

2
I − T S

R 1

2
I + T ∗






.

Here S and T respectively denote the traces of the single and double layer
potentials on Γ, while T ∗ and −R denote the traces of the normal derivatives
of the single and double layer potentials on Γ (see equation (16) below). This
assumption will be referred to as (HC) in the following. It should be noted
that the matrix P denotes the so-called Calderón projection for the interior
problem (the operator P actually satisfies P

2 = P, [16]). In particular, the
first of the two above equations can be specified as

eikx·d =
C

2
(1− 2T (1)(x)− 2S(λ)(x)) ∀ x ∈ Γ.

Assumption (HC) may be impossible to verify in practice, this is why we here-
after mention two particular situations where this condition is automatically
satisfied (see Lemma 3.1 below):
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Figure 2. Illustration of assumption (H1).

• the function λ is real and k2 is not a Dirichlet eigenvalue of the operator
−∆ in D,

• the domain D is C1 and both D and the function λ are assumed to be
invariant by reflection against a plane which does not contain the direction
d or by a rotation (different from identity) around an axis which is not
directed by d.

Let us remark that the proof under assumption (H2d) follows exactly the same
lines as the proof in the case µ = 0 given in the previous section. We therefore
shall detail the proofs only for assumptions (H1), (H2a) − (HC), (H2b) − (HC),
(H2c)− (HC). The results are formulated and proved in Propositions 2, 3 and 4.

Proposition 2. Under assumption (H1) the farfield associated with one incident
plane wave uniquely determines the coefficients λ and µ.

Proof. Using the same arguments and notation as in the first paragraph of the proof
of Proposition 1, we arrive in the present case at:

∂u1
∂ν

+ µ1∆Γu1 + λ1u1 =
∂u1
∂ν

+ µ2∆Γu1 + λ2u1 = 0

on Γ. In order to simplify the notation we set in the following u := u1. If µ1 = µ2,
then we easily conclude that λ1 = λ2 using the same arguments as in the proof of
Proposition 1. If µ1 6= µ2, then on Γ

(8) ∆Γu = αu,
∂u

∂ν
= βu,

with

α = −λ2 − λ1
µ2 − µ1

, β = −µ2λ1 − µ1λ2
µ2 − µ1

.

We notice that α = −k2Γ, where k2Γ is an eigenvalue of the negative Laplace-Beltrami
operator −∆Γ.
Let us consider first the case when Γ contains a portion of plane Γ0 = Γ ∩B(x0, η)
of outward normal ν such that the set Q0 = {x+ γν, x ∈ Γ0, γ > 0} is included in
Ω. Then there exists a system of coordinates (x1, x2, x2) such that x(0, 0, 0) = x0
and

Q0 = {x(x1, x2, x3),
√

x21 + x22 < η, x3 > 0},

Inverse Problems and Imaging Volume X, No. X (200X), X–XX
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Γ0 = {x(x1, x2, x3),
√

x21 + x22 < η, x3 = 0}.
We now consider the function ũ defined in Q0 from u by

(9) ũ(x1, x2, x3) = u(x1, x2, 0)c(x3),

where the function c is uniquely defined by

(10)
d2c

dx23
+ (k2 − k2Γ)c = 0, c(0) = 1,

dc

dx3
(0) = β.

In the domain Q0 we obtain

∆ũ+ k2ũ = ∆Γu(x1, x2, 0)c(x3) + u(x1, x2, 0)
d2c

dx23
+ k2u(x1, x2, 0)c(x3)

= u(x1, x2, 0)

(

d2c

dx23
+ (k2 − k2Γ)c

)

(x3) = 0.

On the surface Γ0 we obtain

ũ(x1, x2, 0) = u(x1, x2, 0),
∂ũ

∂x3
(x1, x2, 0) =

∂u

∂x3
(x1, x2, 0).

The functions ũ and u are both solutions of the same Helmholtz equation in Q0,
and they satisfy ũ = u and ∂ν ũ = ∂νu on Γ0. Hence, unique continuation implies
ũ = u in Q0.
Since us satisfies the radiation condition when ||x|| → +∞, we have in particular
that limx3→+∞ |us(x1, x2, x3)| = 0. Recalling that

u(x1, x2, x3) = us(x1, x2, x3) + eik(d1x1+d2x2+d3x3),

we obtain

(11) u(x1, x2, x3) ∼ eik(d1x1+d2x2+d3x3), x3 → +∞,

and in particular when x1 = x2 = 0,

u(0, 0, x3) ∼ eikd3x3 , x3 → +∞,

that is

(12) c(x3) ∼ Ceikd3x3 , x3 → +∞.

To see that the asymptotic behavior (12) is impossible, we have to discuss separately
the three cases kΓ < k, kΓ = k and kΓ > k. In the case kΓ < k, we obtain from (10)

c(x3) =
1

2
(1− i

β
√

k2 − k2Γ
)ei

√
k2−k2

Γ
x3 +

1

2
(1 + i

β
√

k2 − k2Γ
)e−i

√
k2−k2

Γ
x3 .

This implies that either
√

k2 − k2Γ = kd3 or −
√

k2 − k2Γ = kd3. In both cases,

c(x3) = eikd3x3 and by using again that u(x1, x2, x3) = u(x1, x2, 0)c(x3) in Q0, we
conclude from (11) that u(x1, x2, 0) = eik(d1x1+d2x2) in Γ0, whence u = eikd.x in Q0,
and lastly u = eikd.x in Ω. Now we use ∂u/∂ν = βu on Γ to see that d.ν is constant
on Γ. This is forbidden by the fact there exist at least 4 points x ∈ Γ such that the
4 corresponding outward normals ν(x) are different.
In the case kΓ = k, we have

c(x3) = 1 + βx3,

while in the case kΓ > k, we have

c(x3) =
1

2
(1 +

β
√

k2Γ − k2
)e
√

k2

Γ
−k2x3 +

1

2
(1− β

√

k2Γ − k2
)e−

√
k2

Γ
−k2x3 ,
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10 Laurent Bourgeois and Houssem Haddar

which in both cases contradicts the asymptotic behavior (12).
We now briefly consider the cases when Γ0 is a portion of cylinder or a portion
of sphere. If Γ0 is the portion of cylinder of radius R, then in Q0 we obtain with
appropriate cylindrical coordinates (r, θ, z)

u(r, θ, z) = u(R, θ, z)c(r),

where the function c is uniquely defined, with κ2 := k2 − k2Γ, by

1

r

d

dr
(r
dc

dr
) + κ2c = 0, c(R) = 1,

dc

dr
(R) = β.

Following the case κ = 0, κ2 > 0 or κ2 = (iκ̃)2 < 0, the function c is respectively
a linear combination of 1 and log r, a linear combination of H1

0 (κr) and H2
0 (κr)

(Hankel functions of the first and second kind), or a linear combination of I0(κ̃r)
and K0(κ̃r) (Modified Bessel functions). Whatever the case, the behavior of c(r)
when r → +∞ is not consistent with

u(r, θ, z) ∼ eik(rdr+zdz), r → +∞.

If Γ0 is the portion of sphere of radius R, then in Q0 we obtain with appropriate
spherical coordinates (r, θ, φ)

u(r, θ, φ) = u(R, θ, φ)c(r),

where the function c is uniquely defined, with κ2 := k2 − k2Γ, by

1

r2
d

dr
(r2

dc

dr
) + κ2c = 0, c(R) = 1,

dc

dr
(R) = β.

Following the case κ = 0, κ2 > 0 or κ2 = (iκ̃)2 < 0, the function c is respectively
a linear combination of 1 and 1/r, a linear combination of eikr/r and e−ikr/r, or a

linear combination of ek̃r/r and e−k̃r/r . Whatever the case, the behavior of c(r)
when r → +∞ is not consistent with

u(r, θ, ψ) ∼ eikrdr , r → +∞,

which completes the proof.

Remark 2. The geometrical assumptions in (H1) are only technical and are dic-
tated by the proof where an explicit solution, using separation of variables, is needed.
It seems plausible that our technique can also be generalized to other geometries
where explicit solutions that satisfy (8) can be obtained. However it does not apply
to the general case.

Proposition 3. Under assumptions (H2a)−(HC), the farfield associated with one
incident plane wave uniquely determines µ.

Proof. The identity

∂u1
∂ν

+ µ1∆Γu1 + λu1 =
∂u1
∂ν

+ µ2∆Γu1 + λu1 = 0

on Γ leads, by denoting again u1 = u to simplify the notation, and if we assume
µ1 6= µ2, to

(13) u = C and
∂u

∂ν
= −Cλ on Γ,
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Identification of generalized impedance boundary conditions 11

where C ∈ C is a constant.
We now recall the following classical representation formulas for us and ui (see for
example [16]).

(14) us(x) = DL(us)(x)− SL(
∂us

∂ν
)(x), ∀x ∈ Ω,

(15) ui(x) = −DL(ui)(x) + SL(
∂ui

∂ν
)(x), ∀x ∈ D,

where the single- and double-layer potentials SL and DL are defined for φ ∈
H−1/2(Γ) and ψ ∈ H1/2(Γ) by

SL(φ) = 〈Φ(x, .), φ(.)〉H1/2(Γ),H−1/2(Γ) , DL(ψ) =

〈

∂Φ(x, .)

∂ν
, ψ(.)

〉

H−1/2(Γ),H1/2(Γ)

.

Here Φ(x, y) := eik||x−y||/4π||x−y|| denotes the fundamental solution of the Helmholtz
equation that satisfies the Sommerfeld radiation condition.
Let γ−0 (resp. γ+0 ) be the interior (resp. exterior) trace application, γ−1 (resp. γ+1 )
be the interior (resp. exterior) trace of the normal derivative application. Following
[16], we define

(16)



































S = γ−0 SL = γ+0 SL : H−1/2(Γ) → H1/2(Γ),

T = 1
2 (γ

+
0 DL + γ−0 DL) : H1/2(Γ) → H1/2(Γ),

R = −γ−1 DL = −γ+1 DL : H1/2(Γ) → H−1/2(Γ),

T ∗ = 1
2 (γ

+
1 SL + γ−1 SL) : H−1/2(Γ) → H−1/2(Γ),

and we recall the jump relations










γ±0 DLψ =
1

2
(±ψ + 2T ψ), ∀ψ ∈ H1/2(Γ),

γ±1 SLφ =
1

2
(∓φ+ 2T ∗φ), ∀φ ∈ H−1/2(Γ).

First, by passing to the limit x→ Γ in (14) and (15), it follows that in the sense of
trace on Γ,

(17)
1

2
us(x) = T (us)(x)− S(∂u

s

∂ν
)(x),

(18)
1

2
ui(x) = −T (ui)(x) + S(∂u

i

∂ν
)(x).

Using now u = us + ui, the boundary conditions (13) and the equation (17), we
obtain that

1

2
us(x) = C T (1)(x)− T (ui)(x) + CS(λ)(x) + S(∂u

i

∂ν
)(x).

By subtracting (18) to the above equation we obtain

1

2
(us(x)− ui(x)) = C T (1)(x) + CS(λ)(x),

so that by using once again us + ui = C on Γ,

(19) ui(x) = C(
1

2
− T (1)(x)− S(λ)(x))
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12 Laurent Bourgeois and Houssem Haddar

on Γ.
Secondly, by taking the trace on Γ of the normal derivative in (14) and (15) and by
repeating the same calculations as above, we obtain

(20)
∂ui

∂ν
= C(R(1)− λ

2
− T ∗(λ))

in the sense of H−1/2(Γ). Equations (19) and (20) are equivalent to (7), which is
forbidden by assumption (HC).

Remark 3. In view of lemma 3.1, we point out that since λ ∈ L∞(Γ), S(λ) reduces
on Γ to

S(λ)(x) =
∫

Γ

λ(y)Φ(x, y) ds(y)

and, if the boundary Γ is of class C1 or is a polyhedral, T (1) reduces on Γ to

T (1)(x) =

∫

Γ

∂Φ

∂νy
(x, y) ds(y).

Remark 4. One can easily show that if assumption (HC) is not satisfied, i.e. one
can find a constant C and a field λ which satisfy (7), then one can reconstruct a to-
tal field u associated to the incident field ui that satisfies the generalized impedance
boundary conditions for any value of µ. In other words, assumption (HC) is nec-
essary to have uniqueness.

Proposition 4. Under assumptions (H2b) − (HC) or (H2c) − (HC), the farfield
associated with one incident plane wave uniquely determines the missing parts of λ
and µ.

Proof. The identity

∂u1
∂ν

+ µ1∆Γu1 + λ1u1 =
∂u1
∂ν

+ µ2∆Γu1 + λ2u1 = 0

on Γ leads, by denoting again u1 = u to simplify the notation, and if we assume
µ1 6= µ2, to

−∆Γu =
1

µ2 − µ1
(λ2 − λ1)u.

By multiplying the above equation by u and by integrating by part over Γ, we
obtain

∫

Γ

|∇Γu|2 ds =
1

µ2 − µ1

∫

Γ

(λ2 − λ1)|u|2 ds.

The assumption (H2b) implies that λ2 − λ1 ∈ iR and µ2 − µ1 ∈ R, while the
assumption (H2c) implies that λ2 − λ1 ∈ R and µ2 − µ1 ∈ iR. In both cases
(λ2 − λ1)/(µ2 − µ1) ∈ iR. By taking the real part of the above equation we obtain

∫

Γ

|∇Γu|2 ds = 0,

whence there exists a constant C such that u = C on Γ. This implies that ∆Γu = 0
and by using the same arguments as in the proof of Proposition 1, one obtains in
particular that λ1 = λ2 := λ. We are then in the same configuration as in (13), and
therefore one can complete the proof as for Proposition 3.

Now we specify two particular situations where the condition (HC) is automat-
ically satisfied.
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Lemma 3.1. Let λ ∈ L∞(Γ) and d be a unitary vector of R3 and assume that one
of the following holds:

1. The function λ is real and k2 is not a Dirichlet eigenvalue of the operator −∆
in D.

2. The domain D is C1 and both D and the function λ are assumed to be invari-
ant by reflection against a plane which does not contain the direction d or by
a rotation (different from identity) around an axis which is not directed by d.

Then, there exists no constant C such that

(21) eikx·d = C(1− 2T (1)(x)− 2S(λ)(x)) ∀ x ∈ Γ.

Proof. Let us consider first the case when λ is real and k2 is not a Dirichlet eigen-
value of the operator −∆ in D. Taking the imaginary part of (21), we obtain on
Γ

(22) Im

(

eikx·d

2C

)

= −Im(T )(1)(x)− Im(S)(λ)(x).

Let us define the two functions on D ∩ Ω,

f1(x) = Im

(

eikx·d

2C

)

, f2(x) = −Im(DL)(1)(x)− Im(SL)(λ)(x).

Considering the regularity of

Im(DL)(1)(x) =

∫

Γ

∂.

∂νy
(Im(Φ(x, y)) ds(y), x ∈ D ∩ Ω

and

Im(SL)(λ)(x) =

∫

Γ

Im(Φ(x, y))λ(y) ds(y), x ∈ D ∩ Ω,

since Im(Φ(x, y)) = f(||x − y||) where f(r) = sin(kr)/4πr is a C∞ function, it is
readily shown by using differentiation under the integral sign that for general Lip-
schitz domain D, the function f2 is in C1(R3) . First, this implies that the traces
on Γ of functions f1 and f2 coincide with the left-hand side and the right-hand side
of equation (22), respectively. Secondly, f1 and f2 are functions in C1(R3) which
both satisfy the Helmholtz equation in D and Ω. Hence they satisfy the Helmholtz
equation in R

3. Since their traces on Γ coincide, and since k2 is not a Dirichlet
eigenvalue of the negative laplacian in D, f1 and f2 coincide in D, and then in R

3

by unique continuation. But f2 tends to 0 when ||x|| → +∞, while f1 does not,
which completes the proof for the first case.

Let us now consider the second case where D and λ are assumed to be invari-
ant by a transformation S which is either a reflection against a plane P with d /∈ P
or a rotation (different from identity) around an axis A with d /∈ A.
Without loss of generality, we assume that the plane P and the axis A contains O.
We have

T (1)(x) =

∫

Γ

∂Φ

∂νy
(x, y) ds(y) =

∫

Γ

∂φ

∂νy
(x− y) ds(y), φ(z) :=

eik‖z‖

4π‖z‖ ,

S(λ)(x) =
∫

Γ

λ(y)Φ(x, y) ds(y) =

∫

Γ

λ(y)φ(x− y) ds(y).
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14 Laurent Bourgeois and Houssem Haddar

We use the new variables x = Sx′ and y = Sy′, and the new function φ′ defined by
φ(x) = φ′(x′) = φ(Sx′). We have for some x ∈ Γ,

T (1)(x) =

∫

Γ

∇yφ(x− y).νy ds(y) =

∫

Γ

∇yφ(S(x
′ − y′)).νy ds(y).

Using the chain rule ∇y′φ′(x′ − y′) = ∇yφ(S(x
′ − y′)).S and νy = Sνy′ , we obtain

T (1)(x) =

∫

Γ

∇y′φ′(x′ − y′).νy′ ds(y).

By using the change of variable y = Sy′ in the integral, we obtain

T (1)(x) =

∫

Γ

∇y′φ′(x′ − y′).νy′ ds(y′).

Finally, since ‖Sx′‖ = ‖x′‖ and given the form of φ, φ′(x′) = φ(x′), and thus
T (1)(x) = T (1)(x′). As a result T (1)(Sx) = T (1)(x) for all x ∈ Γ. We prove
the same way that S(λ)(Sx) = S(λ)(x) for all x ∈ Γ, and if (21) holds for some
constant C, then for all x ∈ Γ

eikSx·d = eikx·d,

that is for some n ∈ Z

Sx · d = x · d+ 2nπ

k
.

If x describes a sufficiently small part of Γ which contains the points x0 such that
Sx0 = x0, then n = 0. In such small part of Γ, we hence have Sx− x ⊥ d. Since d
does not belong to the plane or the axis of symmetry, we conclude that (Sx− x).d
cannot vanish in the small part of Γ we consider, which completes the proof.

Remark 5. If the boundary Γ is C1, under either of assumptions (H2a), (H2b),
(H2c), uniqueness of (λ, µ) from two far fields u∞1 and u∞2 generated by two plane
waves ui1 = eikx·d1 and ui2 = eikx·d2 with d1 6= d2 holds without assuming (HC).
This follows from existence of two constants C1 and C2 such that (19) is satisfied
for ui1 and ui2 respectively, and then differentiation of C2u

i
1(x)− C1u

i
2(x) = 0 on Γ

along the tangent planes at two points x1 and x2 of Γ which are perpendicular to
d1 and d2 respectively.

4. Stability

4.1. The classical impedance problem. The analysis of stability for the inverse
problem here is based on the Fréchet derivative of operator T : L∞

+ (Γ) → L2(S2).
We recall that this operator is differentiable in the sense of Fréchet if there exists
a linear continuous operator dTλ : L∞(Γ) → L2(S2) and a function ελ : L∞(Γ) →
L2(S2) which satisfy for all h ∈ L∞(Γ) such that λ+ h ∈ L∞

+ (Γ),

(23) T (λ+ h) = T (λ) + dTλ(h) + ||h||L∞(Γ)ελ(h),

with ελ(h) → 0 in L2(S2) when ||h||L∞(Γ) → 0. We have the following proposition.

Proposition 5. The operator T is differentiable and its Fréchet derivative is the
operator dTλ : L∞(Γ) → L2(S2) which maps h to v∞h such that

v∞h (x̂) =

∫

Γ

p(y, x̂)u(y)h(y) ds(y), ∀x̂ ∈ S2,

where

p(y, x̂) = Φ∞(y, x̂) + ps(y, x̂),
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Identification of generalized impedance boundary conditions 15

ps(., x̂) is the solution of problem (2) in which ui is replaced by Φ∞(., x̂).
Moreover, the operator dTλ : CI(Γ) → L2(S2) is injective.

Proof. We denote us and ush, the solutions of (2) which are associated to λ and λ+h
in L∞

+ (Γ). In order to prove differentiability, we first prove continuity. As we already

remarked at the end of section 2, if we denote K = −J−1
R KR and F = J−1

R FR in
order to simplify notations, us and ush are respectively solutions in H1(ΩR) of

(I −K)us = F, (I −Kh)u
s
h = Fh,

where Kh and Fh satisfy K0 = K, F0 = F and depend continuously on h. By
denoting A = I − K and Ah = I − Kh, we already know that A−1 and A−1

h

exist and are bounded. Then the family of operators Ah meet the assumptions of
Theorem 10.1 in [13], and provided that |||A−1(Ah−A)||| < 1, which happens when
||h||L∞(Γ) is sufficiently small, we obtain the error estimate

||ush−us||H1(ΩR) ≤
|||A−1|||

1− |||A−1(Ah −A)|||
(

||(Ah −A)us||H1(ΩR) + ||Fh − F ||H1(ΩR)

)

.

The continuity of the operator T follows.
Now let us denote esh = ush − us. The function esh satisfies the boundary condition
on Γ

∂esh
∂ν

+ λesh = −h(ush + ui).

This leads to the fact that there exists C > 0 (independent of h) such that

(24) ||esh||H1(ΩR) = ||ush − us||H1(ΩR) ≤ C||h||L∞(Γ).

Finally, let us define v∞h as the far field associated to the scattered field vsh, where
vsh is the solution of problem (2) with data f = −h(us+ui). The mapping h→ v∞h
is clearly a linear continuous operator L∞(Γ) 7→ L2(S2). We obtain

∂(esh − vsh)

∂ν
+ λ(esh − vsh) = −hesh.

It follows that ush − us − vsh is the solution of problem (2) with data f = −hesh. By
using (24), it is clear that T is differentiable in the sense of Fréchet with dTλ(h) =
v∞h . We have from (5),

v∞h (x̂) =

∫

Γ

{vsh(y)
∂Φ∞(y, x̂)

∂ν(y)
− ∂vsh

∂ν
(y)Φ∞(y, x̂)} ds(y), ∀x̂ ∈ S2.

v∞h (x̂) =

∫

Γ

{vsh(
∂Φ∞

∂ν
+ λΦ∞) + h(us + ui)Φ∞} ds(y).

Using the identity
∫

Γ

(
∂ps

∂ν
+ λps)vsh ds(y) =

∫

Γ

(
∂vsh
∂ν

+ λvsh)p
s ds(y),

the definitions of ps and vsh lead to
∫

Γ

(
∂Φ∞

∂ν
+ λΦ∞)vsh ds(y) =

∫

Γ

h(us + ui)ps ds(y),

As a result, we obtain

v∞h (x̂) =

∫

Γ

{(us + ui)(ps +Φ∞)h} ds(y),
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16 Laurent Bourgeois and Houssem Haddar

which is the result since u = us + ui and p = ps +Φ∞.
It remains to prove that dTλ : CI(Γ) → L2(S2) is injective. Assume that for
h ∈ CI(Γ), we have

∫

Γ

p(y, x̂)u(y)h(y) ds(y) = 0, ∀x̂ ∈ S2.

By using lemma 4.1, there exists a sequence x̂n, n ∈ N, with p(., x̂n)|Γ → u|Γh in
L2(Γ). It follows that u|Γh = 0 on Γ, and by using the same arguments as in the
proof of proposition 1, we conclude that h = 0.

The proof of the above proposition requires the following density lemma.

Lemma 4.1. If ∈ L2(Γ) satisfies
∫

Γ

p(y, x̂) f(y) ds(y) = 0, ∀ x̂ ∈ S2,

then f = 0.

Proof. For f ∈ L2(Γ), we hence assume that

(25)

∫

Γ

p(y, x̂)f(y) ds(y) = 0, ∀x̂ ∈ S2.

Let us be the solution of (2) which is associated to data f . We have
∫

Γ

(ps
∂us

∂ν
− ∂ps

∂ν
us) ds(y) = 0,

which leads by using the boundary condition for us, i.e. ∂us/∂ν + λus = f on Γ,
∫

Γ

(
∂ps

∂ν
+ λps)us ds(y) =

∫

Γ

fps ds(y).

Using now the boundary condition for ps, i.e. ∂ps/∂ν + λps = −(∂Φ∞/∂ν + λΦ∞)
on Γ,

−
∫

Γ

(
∂Φ∞

∂ν
+ λΦ∞)us ds(y) =

∫

Γ

fps ds(y).

From (25) we have
∫

Γ

fps ds(y) = −
∫

Γ

fΦ∞ ds(y).

By using the two previous equalities and once again the boundary condition for us,
it follows that

∫

Γ

(us
∂Φ∞

∂ν
− ∂us

∂ν
Φ∞) ds(y) = 0,

which is exactly u∞(x̂) = 0, for all x̂ ∈ S2. We conclude from Rellich’s lemma and
unique continuation that us = 0, and hence f = ∂us/∂ν + λus = 0.

We now introduce DI(Γ) a finite dimensional subspace of CI(Γ). We have the
following result of local Lipschitz stability in DI(Γ) ∩ L∞

+ (Γ).

Lemma 4.2. For each λ ∈ DI(Γ)∩L∞
+ (Γ) there exist η(λ) > 0 and C(λ) > 0 such

that for all h ∈ L∞(Γ) verifying λ+ h ∈ DI(Γ) ∩ L∞
+ (Γ) and ||h||L∞(Γ) ≤ η(λ),

||h||L∞(Γ) ≤ C(λ)||u∞h − u∞||L2(S2),

where u∞ = T (λ) and u∞h = T (λ+ h).
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Proof. We denote v∞h = dTλ(h) and w
∞
h = ||h||L∞(Γ)ελ(h) in (23), so that

u∞h − u∞ = v∞h + w∞
h .

From proposition 5, we deduce that dTλ : DI(Γ) → R(DI(Γ)) is injective, whence
it is of continuous inverse since DI(Γ) is finite dimensional. Precisely, for all λ ∈
DI(Γ) ∩ L∞

+ (Γ) there exists c(λ) > 0 such that for all h ∈ L∞(Γ) with λ + h ∈
DI(Γ) ∩ L∞

+ (Γ),
||h||L∞(Γ) ≤ c(λ)||v∞h ||L2(S2).

Setting ε = ||u∞h − u∞||L2(S2),

||v∞h ||L2(S2) ≤ ||v∞h + w∞
h ||L2(S2) + ||w∞

h ||L2(S2) = ε+ ||h||L∞(Γ)||ελ(h)||L2(S2).

From the two above estimates we conclude that
(

1

c(λ)
− ||ελ(h)||L2(S2)

)

||h||L∞(Γ) ≤ ε.

The fact that ||ελ(h)||L2(S2) → 0 when ||h||L∞(Γ) → 0 completes the proof.

Lastly, KI(Γ) denotes a compact subset of DI(Γ) ∩ L∞
+ (Γ). In the same spirit

as in [3], we obtain the following result of stability in KI(Γ), which is Lipschitz
stability for the considered inverse impedance problem.

Theorem 4.3. For all λ ∈ KI(Γ), there exists a positive constant C(λ) such that

for all λ̃ ∈ KI(Γ),

||λ− λ̃||L∞(Γ) ≤ C(λ) ||u∞ − ũ∞||L2(S2),

where u∞ = T (λ) and ũ∞ = T (λ̃).

Proof. For λ ∈ KI(Γ), we have for all λ̃ ∈ KI(Γ) such that ||λ− λ̃||L∞(Γ) ≤ η(λ),

(26) ||λ− λ̃||L∞(Γ) ≤ C(λ) ||u∞ − ũ∞||L2(S2),

where η(λ) and C(λ) are defined as in Lemma 4.2.

It remains to prove that (26) is still valid for ||λ − λ̃||L∞(Γ) > η(λ), perhaps with

another constant C(λ). Assume that for all n ∈ N, there exists λ̃n such that

||λ− λ̃n||L∞(Γ) > η and

||λ− λ̃n||L∞(Γ) ≥ n ||u∞ − ũ∞n ||L2(S2),

where T (λ̃n) := ũ∞n . It follows that

||u∞ − ũ∞n ||L2(S2) ≤
2M

n
,

where M > 0 is such that KI(Γ) ⊂ B(0,M) in L∞(Γ). Since the sequence (λ̃n)
belongs to the compact set KI(Γ), it follows that there exists a sub-sequence, still

denoted (λ̃n), which converges to λ̃. By continuity of operator T , it follows that ũ∞n
converges to T (λ̃) := ũ∞. From the previous inequality it follows that u∞ = ũ∞,

and from the injectivity of the restriction of T to CI(Γ), it follows that λ = λ̃, which

is in contradiction with ||λ− λ̃||L∞(Γ) > η. The proof is complete.

Remark 6. Let us remark that similar Lipschitz stability results were already es-
tablished in [20] (see Theorem 2.4) for the Laplace equation and standard impedance
problem (µ = 0) with a piecewise-constant impedance. In [20], the Lipschitz con-
stant is proved to be independent of λ, with the help of a more complex technique
based on a quantification of the unique continuation principle. One can also find in
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[20] a quantification of the exponential blowing up of the Lipschitz stability constant
with respect to the space dimension of the parameters. For other results related to
the impedance problem for the Laplace equation one can refer to [5, 6, 12, 9, 1] and
the references therein.

Remark 7. Let M > 0 be a given real. A typical example of subsets KI(Γ) is the

set of functions λ(x) =
∑I

i=1 αiϕi(x) where ϕi, i = 1, . . . I are given continuous
non negative real functions on Γ and the αi satisfy: |αi| ≤ M and Im(αi) ≥ 0 for
i = 1, . . . I. This would correspond for instance to a discretization of the problem
using a finite element method.

4.2. The generalized impedance problem. We analyze the particular case of
assumption (H2b) − (HC) or (H2c) − (HC), the other cases can be studied simi-
larly. The analysis of stability for the inverse problem here is based on the Fréchet
derivative of operator T : V (Γ) ⊂ L∞(Γ)× C → L2(S2), where V (Γ) is defined by
assumptions (H0) − (H2b) − (HC) or (H0) − (H2c) − (HC) (that guarantee well
posedness of the forward scattering problem as well as uniqueness for the inverse
problem). We have the following proposition.

Proposition 6. The operator T is differentiable in V (Γ) and its Fréchet derivative
is the operator dTλ,µ : L∞(Γ)× C → L2(S2) which maps (h, l) to v∞h such that

v∞h,l(x̂) = 〈p(., x̂), l∆Γu+ uh〉H1(Γ),H−1(Γ) , ∀x̂ ∈ S2,

where

p(., x̂) = Φ∞(., x̂) + ps(., x̂),

ps(., x̂) is the solution of problem (2) in which ui is replaced by Φ∞(., x̂).
Moreover, the operator dTλ,µ : CI(Γ) × C → L2(S2) is injective under assumption
(H2b)− (HC) or (H2c)− (HC).

Proof. By reasoning exactly as in the proof of proposition 5, we obtain that T
is differentiable and that dTλ,µ(h, l) coincide with the far field v∞h,l associated to

the scattered field vsh,l, where v
s
h,l is the solution of problem (2) with data f =

−l∆Γ(u
s + ui)− h(us + ui) = −l∆Γu− hu. From (5), we have for all x̂ ∈ S2

v∞h,l(x̂) =

〈

vsh,l,
∂Φ∞(., x̂)

∂ν(y)

〉

H1/2(Γ),H−1/2(Γ)

−
〈

∂vsh,l
∂ν

(y),Φ∞(., x̂)

〉

H−1/2(Γ),H1/2(Γ)

.

Since on Γ
∂vsh,l
∂ν

+ µ∆Γv
s
h,l + λvsh,l = −l∆Γu− hu,

we obtain that

v∞h,l(x̂) =

〈

vsh,l,
∂Φ∞(., x̂)

∂ν

〉

H1(Γ),H−1(Γ)

+
〈

µ∆Γv
s
h,l + λvsh,l + l∆Γu+ hu,Φ∞

〉

H−1(Γ),H1(Γ)
.

By using the fact that

〈

∆Γv
s
h,l,Φ

∞
〉

H−1(Γ),H1(Γ)
= −

∫

Γ

∇vsh,l.∇Φ∞ ds =
〈

vsh,l,∆ΓΦ
∞
〉

H1(Γ),H−1(Γ)
,

v∞h,l(x̂) =

〈

vsh,l,
∂Φ∞

∂ν
+ µ∆ΓΦ

∞ + λΦ∞

〉

H1(Γ),H−1(Γ)

+〈Φ∞, l∆Γu+ hu〉H1(Γ),H−1(Γ)
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Using now the definition of ps, we have on Γ

∂ps

∂ν
+ µ∆Γp

s + λps = −(
∂Φ∞

∂ν
+ µ∆ΓΦ

∞ + λΦ∞).

Thus
〈

vsh,l,
∂Φ∞

∂ν
+ µ∆ΓΦ

∞ + λΦ∞

〉

H1(Γ),H−1(Γ)

= −
〈

vsh,l,
∂ps

∂ν
+ µ∆Γp

s + λps
〉

H1(Γ),H−1(Γ)

= −
〈

ps,
∂vsh,l
∂ν

+ µ∆Γv
s
h,l + λvsh,l

〉

H1(Γ),H−1(Γ)

= 〈ps, l∆Γu+ hu〉H1(Γ),H−1(Γ) .

Finally we obtain
v∞h,l(x̂) = 〈p, l∆Γu+ hu〉H1(Γ),H−1(Γ) ,

which is the desired result.
It follows from lemma 4.4 that l∆Γu+hu = 0 on Γ, and by using the same arguments
as in the proof of proposition 4, we conclude that h = 0 and l = 0.

The proof of the above proposition requires the following lemma, which is the
analogous of Lemma 4.1.

Lemma 4.4. If f ∈ H−1(Γ) satisfies

(27) 〈p(., x̂), f〉H1(Γ),H−1(Γ) = 0, ∀x̂ ∈ S2,

then f = 0.

Proof. Let us be the solution of (2) which is associated to data f . We have
〈

ps,
∂us

∂ν

〉

H1/2(Γ),H−1/2(Γ)

−
〈

∂ps

∂ν
, us

〉

H−1/2(Γ),H1/2(Γ)

= 0,

which leads by using the boundary condition for us, i.e. ∂us/∂ν +∆Γu
s + λus = f

on Γ,
〈

us,
∂ps

∂ν
+ µ∆Γp

s + λps
〉

H1(Γ),H−1(Γ)

= 〈ps, f〉H1(Γ),H−1(Γ) .

Using now the boundary condition for ps, i.e. ∂ps/∂ν+µ∆Γp
s+λps = −(∂Φ∞/∂ν+

µ∆ΓΦ
∞ + λΦ∞) on Γ,

−
〈

us,
∂Φ∞

∂ν
+ µ∆ΓΦ

∞ + λΦ∞

〉

H1(Γ),H−1(Γ)

= 〈ps, f〉H1(Γ),H−1(Γ) .

From (27) we have

〈ps, f〉H1(Γ),H−1(Γ) = −〈Φ∞, f〉H1(Γ),H−1(Γ) .

By using the two previous equalities and once again the boundary condition for us,
it follows that

〈

us,
∂Φ∞

∂ν

〉

H1/2(Γ),H−1/2(Γ)

−
〈

∂us

∂ν
,Φ∞

〉

H−1/2(Γ),H1/2(Γ)

= 0,

which is exactly u∞(x̂) = 0, for all x̂ ∈ S2. We conclude from Rellich’s lemma and
unique continuation that us = 0, and hence f = ∂us/∂ν +∆Γu

s + λus = 0.

By using the same arguments as for the classical impedance problem, we obtain
the following Lipschitz stability for the inverse problem when the parameters are
restricted to the subset K(Γ) defined as follows. Let D(Γ) be a finite dimensional
subspace of CI(Γ)× C, K(Γ) a compact subset of D(Γ) ∩ V (Γ).
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Theorem 4.5. For all (λ, µ) ∈ K(Γ), there exists a positive constant C(λ, µ) such

that for all (λ̃, µ̃) ∈ K(Γ),

||λ− λ̃||L∞(Γ) + |µ− µ̃| ≤ C(λ, µ) ||u∞ − ũ∞||L2(S2),

where u∞ = T (λ, µ) and ũ∞ = T (λ̃, µ̃).
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