Séminaire
Titre : | Séminaire avec Andreas Kirsch (KIT) et Patrick Ballard (Institut ∂’Alembert) |
Contact : | Maryna Kachanovska |
Date : | 13/10/2022 |
Lieu : | R111 (ENSTA) |
Résumé de Patrick Ballard:
On présentera quelques résultats concernant le problème d’évolution posé par le mouvement quasi-statique d’un solide élastique en contact avec un obstacle rigide en présence de frottement sec.
Résumé d'Andreas Kirsch:
In this talk we consider a time-harmonic scattering problem in R2+ = {x ∈
R2 : x2 > 0} where a point source is scattered by a refractive index n =
n(x1, n2) which is periodic with respect to x1 and equal to one for x2 > H.
The purpose of this talk is to explain the derivation of radiation conditions
for the field u when |x| tends to infinity in R2+. All of the approaches modify
the problem by a small parameter such that the resulting problem is uniquely
solvable. Then convergence is shown when this parameter tends to zero. We
formulate a general functional analytic result and apply it to the classical
Limiting Absorption Principle where the frequency ω is replaced by ω + iε
with the small parameter ε > 0. Then we use this abstract result to show
that – in certain cases – different radiation conditions can occur, depending
on the choice of the perturbation.